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1. Introduction

Metallic implants such as stainless steel, cobalt-chromium based 
alloys and titanium and its alloys are preferred biomaterials, 
especially in areas requiring superior mechanical strength 
(Mohammed, Khan, & Siddiquee, 2014). Amongst the currently 
used metallic biomaterials, titanium-based alloys are extensively 
used due to their excellent biocompatibility, corrosion resistance, 
wear resistance, high specific strength, as well as low modulus 
of elasticity relative to other conventional metallic biomaterials 
(Kuroda & et al., 1998; Niinomi, 2008). Amongst all these excellent 
properties of titanium alloys, the modulus of elasticity is one of the 
key drivers for developing these alloys for biomedical applications. 
High elastic modulus puts serious limitations on the performance 
of titanium alloys as implants, especially for artificial joints e.g. 
knee, shoulder, hip. An implant with higher stiffness relative to 
that of the adjacent bone results in bone resorption (Niinomi, Liu, 
Nakai, Liu, & Li, 2016) and cell death around the implant and 
consequently osteoporosis or implant loosening (Gaaser, 2001). 
This biomechanical incompatibility is called the “stress shielding 
effect” (Sumnar, Turner, Igloria, Urban, & Galante, 1998). It 
is therefore essential that the elastic modulus or stiffness of the 
implant is as close to that of the connected bone as possible, to 
facilitate effective transfer of mechanical stress needed by the bone 
(Sumner & Galante, 1992; Mohammed, Khan, & Siddiquee, 2014). 

Commercially pure (CP) titanium and the Ti-6Al-4V alloy 
(ASTM F1108) are currently the most commonly used materials 
as structural biomaterials for orthopaedic prosthesis and dental 
implants (Niinomi, Fatigue performance and cyto-toxicity of low 
rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr, 2003; Geetha & et 
al., 2009) (Geetha & et al., 2009; Niinomi, 2003). However, Al 
and V in Ti-6Al-4V are associated with long-term health problems 
such Alzheimer’s, neuropathy and ostemomalacia (Nag, Banerjee, 
& Fraser, 2005). Vanadium is toxic, both in elemental and oxide 
(V2O5) form, and it alters the kinetic activity of enzymes in the 
body tissues. This phenomenon is associated with inflammatory 
response of the cells (Okazaki, Ito, Kyo, & Tateishi, 1996). The 
release of aluminium ions into the tissues potentially causes 
Alzheimer’s disease (Ikeda, Komatsu, Sowa, & Niinomi, 2002). 
As well as the toxicity of the alloying elements, the biomechanical 
incompatibility (i.e. high elastic or Young’s modulus) of 
commercially (CP) titanium (~100 GPa) and Ti-6Al-4V (~110-112 
GPa) (Long & Rack, 1998) implants relative to that of the human 
bone (10-30 GPa) (Miura, Yamada, Hanada, Jung, & Itoi, 2011) 
is problematic. The αTi phase in CP titanium and Ti-6Al-4V alloy 
promotes the high elastic modulus of the materials (Gross & Abel, 
2001; Geetha & et al., 2009). 

Recent trends in research and development of biomedical titanium 
alloys include low elastic modulus titanium-based alloys, also 
referred to as second generation biomaterials or beta (β) type 
titanium alloys, Table 1. These alloys must contain non-toxic and 
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non-allergic elements and must possess excellent biomechanical 
properties (Li, Hao, Yang, Cui, & Niinomi, 2002; Li, et al., 2014; 
Wang, et al., 2016). Generally, elastic modulus decreases with 
increased volume fraction of the β phase. The elements that are 
known to enhance the volume fraction of β phase in titanium alloys 
by stabilising the β phase are Nb, Ta, Mo, Zr, Cr and V (Niinomi, 
2002; Ikehata, et al., 2004; Abdel-Hady, Hinoshitaa, & Morinagaa, 
2006; Karre, Niranjan, & Dey, 2015). 

Niobium and tantalum are typically considered the most potent 
β stabilisers and effectively reduce the elastic modulus (Yang, et 
al., 2018). Zirconium is considered a neutral element and weak β 
stabiliser in the Ti-Zr alloy system (Correa, et al., 2015). However, 
in the Ti-Zr-Nb system, zirconium acts as a potent β stabiliser 
(Brailovsky, et al., 2011). Kim et al. (2020) studied Ti-Nb-Zr (Nb 
= 12-40, Zr = 0-18) (at.%), finding that the minimum Nb content to 
maintain the β phase at room temperature continuously decreased 
with increasing Zr content. Wang et al. (Wang, et al., 2018) studied 
the Ti-Zr alloy in the composition range of 5 to 45 wt% Zr and 
that only α and αʹ phases existed in the entire composition range. 
Niobium and tantalum are more expensive and denser than pure 
titanium, so addition of large amounts of these metals is not 
economically viable and would also lead to considerable increase 
in the density of the β-type titanium alloys (Yang, et al., 2018). 
Thus, this work focused on developing compatible Ti-Nb-Ta-Zr 
alloys for biomedical applications by computational calculations, 
i.e. first principles calculations and Thermo-Calc calculations. 
The computational approach would reduce experimental effort, 
because they would identify good starting compositions, and hence 
reduce experimental time and consumption of the expensive metal 
powders (Nb, Ta and Zr). The alloys compositions comprised Ti-
Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40) (at.%).

2. Computational methodology      

2.1 First principles calculations

First principles calculations for the proposed β-type alloy Ti-
Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40) (at.%) were conducted using 
density functional theory (DFT) within the generalised gradient 

approximation (GGA) (Burke, Perdew, & Wang, 1998) implemented 
in the Cambridge Serial Total-Energy Package (CASTEP) code 
(Clark, et al., 2005). The cut-off energy convergence used was 
669.4 eV for the plane-wave basis, and the structural relaxation the 
Brillouin Zone (BZ) was sampled with a Monkhorst-Pack k-point 
grid (Monkhorst & Pack, 1976) of (18/n1) × (18/n2) × (18/n3) for the 
n1 × n2 × n3 bcc βTi unit cell (where n1, n2 and n3 are the numbers 
of the unit cells taken in the x, y and z-directions, and equated 
to 1 for all the calculations). The lattice constants were optimised 
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Fischer 
& Almlof, 1992) minimisation algorithm at zero pressure from 
first-principles. The calculations were done at 0 K and the atoms 
were kept fixed at their lattice positions. The polycrystalline elastic 
properties were estimated as a function of composition based on 
the Voigt-Reuss-Hill approach. Voigt gives the upper elastic bound 
due to the assumption of constant strain in all grains, Reuss gives 
the lower bound due to the assumption of constant stress in all 
grains, and the Hill approach is the average of Voigt and Reuss 
which gives the closest figure to the polycrystalline value (Chung 
& Buessem, 1967). All the calculations were run at a maximum 
number of iterations of 100.

2.2 Thermo-Calc

The thermodynamic equilibrium of a system at constant pressure 
is given by the minimum of the Gibbs free energy, 
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 is the molar 
Gibbs energy of phase Ø. Thermo-Calc is used to evaluate Gibbs 
energy parameters as a function of individual phases (Sundman, 
Jansson, & Andersson, 1985; Prins, Cornish, Stumpf, & Sundman, 
2003; Liu, 2009). The database of the parameterised Gibbs energy 
function is usually built from the pure elements, and phases in binary 
and ternary alloys, and can be used to extrapolate thermodynamic 
properties of phases in alloys as a function of composition, 
temperature or pressure. In this work, the Gibbs energy functions of 
pure Ti, Nb, Ta and Zr for the Ti-Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40) 
(at.%) alloys were taken from the SS0L4 database in the Thermo-

Table 1: Titanium-based alloys and their respective mechanical properties for biomedical applications (Geetha & et al., 2009)
Material Standard Modulus (GPa) Tensile strength (MPa) Alloy type

1st generation biomaterials (1950-1990)

CP Ti (grade 1-4) ASTM 1341 100 240-550 α
Ti-6Al-4V ELI ASTM F136, F1472 110-112 860-930 α + β

Ti-6Al-7Nb ASTM F1295 110 900-1050 α + β
Ti-5Al-2.5Fe - 110 1020 α + β

2nd generation biomaterials (1990-to date)
Ti-13Nb-13Zr ASTM F1713 79-84 973-1037 Metastable β

Ti-12Mo-6Zr-2Fe ASTM F1813 74-85 1060-1100 β
Ti-35Nb-7Zr-5Ta - 55 596 β

Ti-29Nb-13Ta-4.6Zr - 65 911 β
Ti-35Nb-5Ta-7Zr-0.4O - 66 1010 β

Ti-15Mo-5Zr-3Al - 82 - β
Ti-Mo ASTM F2066 - - β
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Calc 2020a version. Single point equilibrium (SPE) calculations 
were performed to show stable phases and their compositions at 
500℃ and a pressure of 100 kPa. Calculations were also performed 
between 100℃ and 2000℃ to plot the proportions of phases as a 
function temperature. 

3. Results and discussion

3.1 First principles calculations

Table 2 shows elasticity results of various alloys. For mechanically 
stable crystals, the independent elastic constants should satisfy the 
well-known Born stability criteria (Born, 1940), which for cubic 
structures is c11 > 0, c44 > 0, c11 > |c12| and c11 + 2c12 > 0.

In Table 2, the estimated elastic constants satisfied the Born 
stability criteria (Born, 1940). In addition, the increasing shear 
modulus, cʹ, indicated that the alloys became more stable as the 
niobium concentration increased, Figure 1. The Cauchy pressure, 
cʹʹ, is used to ascertain the kind of bonds for metals and compounds 
(Pettifor, 1992). Brik (2010) observed that cʹʹ is positive for most 
ionic bonds (e.g. metallic) and negative for most covalent bonds 
(non-metallic). Increasing values of Cauchy pressure relative to 
the Nb content confirmed that the metallic behavior of Ti-Nbx-
Ta25-Zr5 alloys became stronger with increasing Nb. The Zener 
anisotropy factor, A, is an indication of the degree of anisotropy 
in solids (Zener, 1948). For A = 1, the material is completely 
isotropic, whereas deviations from unity indicate the degree of 
elastic anisotropy which is defined as (Chung & Buessem, 1967): 
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Elastic anisotropy is the directional dependence of mechanical properties of a material, such as 119 

formation of micro-cracks, movement of cracks, development of plastic deformation . 𝐴𝐴𝐴𝐴∗ has 120 
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(a) 𝐴𝐴𝐴𝐴∗ is zero for the crystals of elastic isotropy, i.e. for A = 1, (b) for an anisotropic crystal 𝐴𝐴𝐴𝐴∗ 122 
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more elastically anisotropic than alloys Ti-Nb30-Ta25-Zr5 and Ti-Nb40-Ta25-Zr5. 126 

Table 2: Elastic properties of Ti-Nbx-Ta25-Zr5 alloys at 0 K. 127 

Nb (at.%) c11 c44 c12 cʹ cʹʹ A 𝑨𝑨𝑨𝑨∗ 

5 133.4 44.02 123.8 4.80 79.78 9.171 0.466 

10 143.8 42.40 123.8 10.0 81.40 4.24 0.229 

20 155.3 39.14 127.6 13.85 88.46 2.826 0.124 

Elastic anisotropy is the directional dependence of mechanical 
properties of a material, such as formation of micro-cracks, 
movement of cracks, development of plastic deformation (Naher 
& Naqib, 2021). A* has the following properties of practical 
importance: 

(a) A* is zero for the crystals of elastic isotropy, i.e. for A = 1, (b) for 
an anisotropic crystal A* is a single-valued measure of the elastic 
anisotropy regardless of whether A < 1 or A > 1 and (c) A* gives a 
relative magnitude of the actual elastic anisotropy possessed by a 
crystal (Chung & Buessem, 1967). 

The bcc crystal structure of alloys Ti-Nb5-Ta25-Zr5, Ti-Nb10-Ta25-
Zr5 and Ti-Nb20-Ta25-Zr5 was more elastically anisotropic than 
alloys Ti-Nb30-Ta25-Zr5 and Ti-Nb40-Ta25-Zr5.

Figure 1 also shows the lattice parameter (a) and shear modulus 
(cʹ) of the bcc phase as a function of Nb content. The lattice 
parameter increased with increasing Nb concentration, which is 

due to the relative atomic sizes of Ti (176 pm) and Nb (198 pm) 
(WolframResearch, 2021). The atomic size of niobium is larger 
than that of titanium, hence an increase in the lattice parameter as 
Nb content increased

Figure 2 shows the change in Young’s modulus with Nb content, 
using the Voigt-Reuss-Hill (VRH) approximation. Young’s 
modulus is defined as the ratio of uniaxial stress and axial strain, 
and is a measurement of the stiffness (Pugh, 1954) (larger Young’s 
moduli indicate stiffer materials). The VRH approximation can 
provide satisfactory estimations of elastic moduli. The lowest 
averaged Young’s modulus (Hill) obtained was 55.23 ± 24.5 GPa 
for the Ti-Nb5-Ta25-Zr5 alloy, although this had large scatter.

3.2 Thermo-Calc calculations

Figure 3 shows the phase proportion diagrams of the alloys as a 
function of temperature. Increased Nb content gradually reduced 
the start of β → α transformation temperature from 882℃ for CP 
titanium to 551.3°C for 40 at.% Nb. Alloys Ti-Nb30-Ta25-Zr5 and Ti-

Table 2: Elastic properties of Ti-Nbx-Ta25-Zr5 alloys at 0 K
Nb (at.%) c11 c44 c12 cʹ cʹʹ A A*

5 133.4 44.02 123.8 4.80 79.78 9.171 0.466
10 143.8 42.40 123.8 10.0 81.40 4.24 0.229
20 155.3 39.14 127.6 13.85 88.46 2.826 0.124
30 170.5 38.02 129.6 20.45 91.58 1.859 0.0455
40 311.7 35.13 212.7 49.5 177.6 0.7097 0.0140

* cʹ = ½(c11 - c12), cʹʹ = c12 – c44, A = 2c44/(c11 – c12) 
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Figure 3: Calculated phase proportion diagrams of Ti-Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40 at.%)
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Nb40-Ta25-Zr5 were favourable, since more β phase was stabilised 
compared to other alloys. This can be attributed to the higher Nb 
content as a stronger β stabiliser (Yang, et al., 2018). 

Figure 4 shows the variation in phase proportion with Nb content. 
The data were generated from single point equilibrium (SPE) 
calculations and only two equilibrium phases (α and β) were 
observed. The amount of β (bcc) phase increased with increasing 
Nb content, thus confirming the potency of Nb as a β stabiliser. At 
20 at.% Nb, the amount of equilibrium β phase was 58.6 mol.% 
at 500℃, i.e. more than the α phase. The experimental results of 
Okazi et al. (2004), Kim et al. (2006) and Gutierrize et al. (2014) 
showed that the β phase was the major phase in alloys with higher 
than 25 at.% Nb.

The increasing β content with increasing Nb content (Figures 3 
and 4) is, however, not in agreement with the predicted elastic 
Young’s modulus from first principles calculations (Figure 2). As 
noted by Niinomi (2008), increasing β phase content contributes 
significantly to the reduction of the elastic Young’s modulus. 
However, the first principles results (Figure 2) agreed well with 
Wang et al. (2016).  

In summary, first principles calculations showed Ti-Nb5-Ta25-Zr5 as 
the potential alloy due to its lower elastic Young’s modulus with a 
positive shear modulus. In addition, the calculations from Thermo-
Calc showed that over 50 mol.% of β phase can be achieved at a 
minimum Nb content of 20 at.% The phase stability analysis for 
the alloys will be done in future studies through the application of 
Pandat software package.

4. Conclusions
a. First principles density functional theory (DFT) within 

generalized gradient approximation (GGA) was conducted at 0 
K to determine the elastic properties (Young’s modulus, shear 
modulus, Cauchy pressure, elastic anisotropy and the bcc lattice 
constant) of alloys Ti-Nbx-Ta25-Zr5 (x = 5, 10, 20, 30, 40) at.% in 
a CASTEP code. 

b. Increased Nb content to 40 at.% improved the mechanical 
stability and isotropy of the alloys.

c. Increased Nb content to 40 at.% increased the lattice parameter 
while the alloys remained mechanically stable, shown by the 
calculated shear moduli (cʹ > 0).

d. The Voigt-Reuss-Hill approximation showed that the Young’s 
modulus increased with Nb content to 40 at.%. Alloy Ti-Nb5-
Ta25-Zr5 had the lowest Young’s modulus of 55.3 ± 24.45 GPa 
(although this had large scatter) and this value is closest to the 
cortical Young’s modulus of the human bone.

e. Thermo-Calc calculations were used to investigate the 
equilibrium phase proportions of the proposed alloys using 
SS0L4 database. 

f. Thermo-Calc showed that the β phase became more stable with 
increased Nb content. 

g. Up to 58.6 mol% of β phase was achieved at 20 at.% Nb at 
500℃. The transformation temperatures decreased as the Nb 
content was increased, with alloy Ti-Nb40-Ta25-Zr5 reaching the 
lowest phase transformation temperature of 551.3℃. 
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