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1.	 Introduction

Tungsten carbide Metco 32C is a brand name of a form of a 
self-fluxing alloy which has a hard phase constituent of tungsten 
carbide. These blends undertake the role of supporting oxidation 
and corrosion resistance at high temperatures as well as increasing 
the hardness of the coated materials (Oerlikon, 2017).

Metco 32C has the highest concentration of tungsten carbide as 
opposed to other self-fluxing alloys.  Metco 32C powder which has 
high wear resistance depicts great characteristics for post-coat fuse 
for dense, virtually porosity free, metallurgical bonded coatings 
(Oerlikon, 2017). Carbide particles are usually ‘cemented’ by a 
binder metal, such as cobalt, which liquidizes during the sintering 
process and acts as a glue which bonds the tungsten carbide 
particles. Cemented carbides using tungsten carbide (WC) as the 
main raw material usually depict characteristics of high hardness 
and excellent wear resistance and are widely used in drills, moulds, 
needles, cutting tools, and other special processing industries as 
coatings on these materials. Due to the high bonding strength and 
fine microstructure between ultrafine tungsten carbide particles and 
metal binder phase, ultrafine-grain cemented carbide combines the 
characteristics of ceramics and metal at the same time, which has 

high toughness, good strength and excellent hardness (Yu-Cheng, 
et al., 2020).

Additive manufacturing (AM) is a fast growing technology in 
which a shape/object is fabricated using layer-by-layer deposition 
of a material, in a bottom-up manufacturing operation (Wohler, 
2014) . AM allows manufactures to produce components which are 
more cost- and resource efficient on a small scale production (Neely, 
2008) , due to this technologies value chains are shorter, more 
localised, more collaborative, and offer significant sustainability 
benefits (Gebler, et al., 2014).

The most important powder characteristics to consider for AM 
include: particle size, shape, flow, density, porosity, surface area 
and topography which includes characterisation methods such 
as light scattering and image analysis (such as SEM and optical 
microscopy) for particle sizes and particle size distribution (PSD) 
determination, Energy Dispersive Spectroscopy (EDS) for surface 
characterisation and a Hall flow for the flowability measurements 
of the powder (Committee, 2020). Although not a ascribe standards 
method for powder surface characterisation, X-ray diffraction 
(XRD) is employed to determine the crystal structure of phases 
within the powder particles. (Sutton, et al., 2016.). 
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Powder spheroidisation is the process of transformation of either 
agglomerated/ irregular shaped powder into spherical powder 
particles. Radio frequency (RF) induction plasma technology can 
be used to achieve this through in-flight heating and melting of 
feed material particles followed by rapid cooling and solidification 
under controlled conditions. The material melts and is reformed 
into spherical particles (Wahll, et al., 2014). 

Spherical powders can cater to a wide range of applications 
such as hard surfacing, cold spray, thermal spray, metal injection 
moulding and additive manufacturing (Hendrixson, 2016). To 
achieve optimum flow characteristics and high packing density, 
an ideal AM metal powder should be highly spherical in shape 
with no satellites (finer particles). Increased particle sphericity can 
improve powder feeding, resulting in smoother layers, improved 
packing density, increased heat conduction in the powder bed and 
an enhanced melting profile (Wahll, et al., 2014). 

RF plasma spheroidisation, is the method available for the 
production of spherical tungsten powders due to the high melting 
point of this material (Haehn, et al., 1986). (Lu, et al., 2012) (Tong, 
et al., 2015). RF plasma can achieve temperature of 10,000 K or 
higher (Guo, et al., 2010).

Entities such as the National Laser Centre (NLC) at the Council 
for Scientific and Industrial Research (CSIR) uses WC for thermal 
coating purposes on various materials. Methods such as thermal 
spraying requires spherical particles to ensure effective splat 
formation on the substrate or surface being coated.  

The focus of this study was to spheroidise irregularly shaped 
tungsten carbide Metco 32C powders to at various plate powers 
(power supply of the ICP torch into the plate current) making use of 
the 15kW Tekna plasma spheroidisation system and to characterise 
the powder according to the additive manufacturing requirements.  

2.	 Experimental 

The as-received Metco 32C tungsten carbide powder was sieved 
into various fractions using a sieve shaker. Only the sieve fraction 
63-90 μm was used for this study because this size fraction 
accounted for 81% of the entire sample.  

2.1	 Spheroidisation ratio, fraction of evaporation, 
particle density and particle size distribution

A schematic representation of the Tekna 15 kW induction plasma 
system which is situated at the South African Nuclear Energy 
Corporation (Necsa) is shown in Figure 1. Additional detail 
regarding the inductively coupled plasma (ICP) torch design 
describing the plasma gas, sheath gas, feeding probe and torch 
wall can be found in literature (Bissett & Walt, 2017). The powder 
is introduced into the feeding probe via a vibration feeder and 
swept into the ICP torch by the carrier gas. For the purpose of 
this study the plasma torch was mounted onto a reactor chamber 
equipped with a catch-pot for the collection of the solid particles. 
During plasma treatment evaporation of the particles might occur, 
resulting in the formation of fine deposits which will be collected 
at the bottom of the cyclone and the filter. The tungsten carbide 
powder was treated at various conditions as indicated in Table 1.  
For all experiments the powder feed rate was approximately 0.7 

kg/h, reactor pressure 85 kPa (abs) and the carrier gas (Ar) flow 
rate was 2 standard litres per minute (slpm). After spheroidisation 
the collected powders were weighed in order to determine what 
fraction of the powder evaporated (condensed as very fine particles 
of <<150 nm). 

Table 1 shows the conditions at which the Metco 32C powder 
particles were spheroidised at. The energy consumption is a 
function of power and the rate at which the powder was fed at into 
the plasma using a vibration feeder set at pre-calibrated settings. 
Helium was introduced into the sheath gas to protect the torch 
wall and to assist in energy transfer from the plasma to the powder 
particles.
Table 1: Thermal plasma conditions for the treatment of WC 
powder size 63-90 µm and with Helium (He) as the sheath gas 
at a concentration of 0.67 % v/v
Plasma plate power (kW) Energy consumption 

(kW.h / kg)
10 4.37
12 4.7
15 12.4

Scanning electron microscopy (SEM) analyses of the treated/
densified powders were performed using a Quanta FEI 200 D 
SEM system.  Image processing was applied on the Back-Scattered 
Electron (BSE) images as obtained from the SEM.  The Carl Zeiss 
Zen 2 Core software package was used to determine if there was 
a quantifiable change in the particle morphology under different 
conditions.  The average circularity was determined by evaluating 
a number of particles and making use of Equation 1.  The shape 
factor fcirc is the circularity, a function of the perimeter P and the 
area A of the particle:
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Figure 1: Schematic of powder spheroidisation process in a radio 
frequency plasma
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helium pycnometer. The 10 cm3 sample cup was used for density 
analysis of three samples to determine the average density.  Particle 
size distribution (PSD) of all powders was determined using a 
Saturn DigiSizer II Analyzer.  

2.2	 Phase composition

The phase composition of the powders were determined by X-ray 
diffraction (XRD) using a Bruker D  8 Advance diffractometer 
equipped with Cu Kα (λ=0.15418 nm) radiation source. Diffracted 
data was collected using a LynxEye position sensitive detector. 
The identification of the phases was done using ICDD’s PDF4+ 
2020 version database. The phase compositions were determined 
by Rietveld refinement. 

3.	 Results and discussions

Metco 32C powder with a size fraction of 63-90 µm was 
spheroidised at various plasma plate powers. Table 2 summarises 
the conditions and results from the spheroidisation process. 

The evaporated powder mass after the spheroidisation process was 
relatively low, although as the plasma plate power increased, it 
resulted in an increase in powder evaporation. 

Figure 2 shows the particle size distribution of the feed/ untreated 
powder and the spheroidised powders at various plate powers. 
From Figure 2 it was observed that the untreated feed powder had 
a wider particle size distribution as opposed to the spheroidised 
powders.  The plasma treated powder had a narrower PSD when 
compared to the feed powder, while the distribution had shifted to 
a small particle size.

Table 3 shows the particle size distribution (PSD) results of all the 
Metco 32C powder as determined by light scattering.

From Table 3 it was deduced that the median of the tungsten 
carbide powder decreased after plasma treatment indicating a 
shift in the PSD to the smaller particle sizes.  The decrease in the 
D90 after plasma treatment suggested a decrease in the amount of 
large particles while the amount of smaller particles remain similar 
before and after plasma treatment as shown by the D10.

Figure 3 depicts the SEM images of tungsten carbide powder before 
and after treatment. The magnification used for the BSE was 155x. 

From the images it is evident that as plate power was increased 
the number of spheroidised particles increased. At higher plate 
powers the powder particles are able to fully melt and ultimately 
spheroidise, as opposed to lower plate powers where the particles 
could be partly melted. These results were substantiated by the 
proven theory that the degree of spheroidisation is dependent on 
the operating conditions such as the carrier gas flow rate, powder 
feed rate, and the plasma plate power (Bissett & Walt, 2017). 

Table 2: Tekna plasma conditions and results for spheroidisation of tungsten carbide Metco 32C powder
Plasma plate 
power (kW)

Sheath gas composition 
(Ar/-) slpm

Powder fed (g) Feed rate (kg/h) Catch pot (g) Cyclone (g) Evaporated (%)

10 Ar(14)/He(30) 27.34 2.29 26.96 0.38 1.3
12 Ar(14)/He(30) 28.19 2.54 27.84 0.35 1.6
15 Ar(14)/He(30) 29.91 1.21 29.28 0.63 2.11
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Figure 2: PSD of untreated and treated tungsten carbide powders 
at various plate powers

Table 3:  PSD of all Metco 32C powders as determined by light scattering
Plasma Condition (kW) Median (D50) (µm) D90 D10 Standard deviation (µm)

Untreated 100.150 153.409 68.766 2.232
10 92.553 122.288 70.592 0.298
12 92.258 126.088 69.245 0.400
15 91.514 118.363 68.017 1.008

Figure 3: Backscatter SEM images at 155x magnification of the 
(a) WC 63 – 90 µm feed powder and powders plasma treated at 
(b) 10 kW, (c) 12 kW and (d) 15 kW
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Table 4 shows the relation between energy input (or plasma power) 
on spheroidisation ratio, fraction of evaporation and the number 
of spherical and irregular particles. The spheroidisation ratio is 
defined as the percentage of spherical particles to the total number 
of particles in the treated product and is estimated by counting the 
spherical particles within a specific frame size of the micrograph. 
From both Table 4 and Figure 3 it is evident that at lower 
energy consumptions the number of spherical particles and the 
spheroidisation ratio were relatively low. This was also observed 
on the SEM images. By looking at the images, visually it was 
apparent that as the applied plate power was increased the shape 
of the particles had become more spherical. Although the fraction 
of evaporation seemingly increased as the energy consumption 
increased, the fraction of evaporations were relatively small for all 
plasma conditions which can be attributed to the high melting point 
of tungsten carbide. A slight decrease in the powder density was 
observed after plasma treatment. The reason for this is not known 
at this stage. It might be speculated that the presence of impurities 
might be responsible for this observation.

The X-ray diffraction profiles are given in Figure 4. For all the 
powders a mixed phase composition was revealed although the 
feed was only WC. The WC and W2C phases were present in all 
the powders but not at the same concentration. The WC phase 
composition decreased when the plasma power increased, while 
the W2C phase composition increased when the plasma operating 
power increased.

From Figure 4 it’s evident that the XRD trend results of the feed/ 
untreated powder and plasma treated powder change in comparison 
were observed. There were 11 major 2θ peaks, 8 of these are WC 
peaks. The following peaks were identified as tungsten carbide: 
31⁰, 36⁰, 48⁰, 64⁰, 75⁰, 84⁰, 99⁰ and 110⁰. These results conformed 
to diffraction peaks of standard tungsten carbide powder diffraction 

with a body-centred cubic (bcc) lattice structure. W2C compositions 
were identified at the following peaks: 38⁰, 40⁰ and 52⁰.

The phase composition as determined by Rietveld refinement is 
shown in Table 5. 

Table 5: Phase composition of the feed and plasma treated 
powders as determined from XRD analysis and Rietvield 
refinement

Sample Phase composition (%)
WC W2C

Feed 93 7
10kW 83 17
12kW 86 14
15kW 42 58

Looking at Table 5 it’s evident that there was a decrease in the 
concentration of the phase composition of WC to W2C when it was 
heated during the plasma spheroidisation process. This phenomena 
is known as decarburization.

When carbon in the metal reacts with gases containing oxygen 
or hydrogen, the reaction results in the removal of carbon. 
Decarburization also occurs under inert condition, but at a much 
slower rate. This results in the removal of hard carbide phases 
which in turn softens the metal, primarily at the surfaces which are 
in contact with the decarburizing gas (Shvartsman, 1973).

4.	 Conclusion

From this study it was evident that when the tungsten carbide 
Metco 32C power was treated in the radio Tekna RF plasma 
spheroidization system at various conditions, the powder particles 
became more spherical. The spheroidisation ratio increased as 
the plate power increased. The spheroidisation ratio increased 

Table 4: Average spheroidisation ratios of WC with PSD of 63-90µm as determined by image processing software with spherical 
particles having circularity values of 0.85

Plasma 
conditions (kW)

Energy consumption 
(kg.h/kW)

Spherical 
particles (-)

Irregular 
particles (-) 

Spheroidisation
ratio (%)

Fraction of 
evaporation (%)

Powder density 
(g/cm3)

Untreated - 0 39 0	 - 13.91
10 4.37 10 30 25 1.3 12.79
12 4.7 17 46 27 1.6 12.76
15 12.4 10 10 50 2.11 12.65
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between 25-50%. The powder density decreased slightly after 
plasma treatment. This is contradictory to literature because as 
the spheroidisation ratio increases the density of the power should 
simultaneously increase. 

The feed powder had a wider PSD as opposed to the treated powder. 
The treated powder were left skewed and depicted a unimodal PSD. 

The XRD results depict that decarburization occurs because there 
is an increase in the W2C phase composition when the power of the 
RF plasma was increased. Thus resulting in the decrease of the WC 
phase composition as the plasma plate power increases. 
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