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1.	 Introduction

Advanced high strength steels (AHSS) have been a significant 
driver in new steel developments for automotive applications. Their 
development was lead by creating multiphase structures to improve 
strength and elongation.1 Quench and partition process (Q&P) is 
one such heat treatment proposed by Speer2 to obtain multiphase 
microstructure as required for 3rd generation AHSS. The typical 
microstructure of Q&P processed steel consists of a martensite 
matrix with embedded retained austenite (RA) in film or blocky 
form. The key alloying elements of Q&P processed steel consists 
of C, Mn, Si, or Al. The addition of Mn improves hardenability, and 
Si is added to suppress the formation of cementite.3 The two-step 
Q&P proposed by Speer based on the constraint carbon equilibrium 
concept4 has four steps: (i) austenitization, (ii) quenching between 
Ms and Mf to obtain martensite-austenite mixture, (iii) partitioning 
step whereby the steel is heated to a higher temperature above 
Ms to facilitate carbon partitioning and (iv) final cooling to room 
temperature.

The dilatometric analysis of the Q&P process5 showed that the Q&P 
process is more complex, with other transformations taking place 
along with carbon partitioning. Kim et al.6 had observed isothermal 
transformation at quenching temperature. However, the nature of 
the transformation product was not clear. In this paper, we look into 
the progression of partitioning reaction, which occurs in the third 

stage of Q&P heat treatment during the one and two-step Q&P 
process. The two-step and one-step Q&P heat treatment shown in 
Fig1 (a) & (b) were carried out on high silicon steel at various 
quench temperatures to evaluate the effect of heat treatment type 
and quench temperature on the stabilization of RA. The kinetics 
of the one-step Q&P process were examined during isothermal 
transformation by fitting the JMAK equation.

2.	 Material and methods

A hot worked steel with the composition shown in Table 1 used 
a dilatometer to study the phase transformation and kinetics for 
the Q&P process. The steel was melted in an induction furnace 
and cast. The cast ingot was heated to a temperature of 1200oC 
for 3 hours. It was followed by hot forging at 900oC to 50 mm 
square bars and further hot rolled to a diameter of 15 mm x 30 mm 
long rods. These samples were cut to a diameter of 5 mm x 10 mm 
length for dilatometry experiments. After determining the critical 
temperatures Ac1, Ac3, and Ms, the alloys were subject to the two-
step and one-step Q&P heat treatment as shown schematically in 
Figure 1(a) & (b). 

Heat treatments were carried out in a Bhr 805A dilatometer. 
Specimens were placed between the two silica rods and heated by 
an induction coil under a vacuum. Helium was used as a cooling 
medium for quenching purposes. Different heat treatments were 
carried out after austenitization at 900oC for 300 s. The applied 
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Table 1: The chemical composition (wt. %) and critical temperatures of the investigated alloy
Element C Mn Si Al Cr P S Ti B Ms Ac1 Ac3

Amount
(Wt. %)

0.27 2.8 2.2 0.50 0.75 0.011 0.014 0.009 0.001 368oC 750oC 860oC
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heat treatments are described as follows: (a) Direct quench to room 
temperature after austenitization to determine the Ms, determined 
as 368oC. (b) The two-step Q&P heat treatment carried above and 
below the optimum quench temperature Fig 1(a). The samples 
were quenched to the following temperatures: 180, 200, 220, 
225, 240, and 260oC, then partitioning at 400oC for 200 s. (c) The 
isothermal treatments are referred to here as a one-step Q&P heat 
treatment performed above and below the Ms temperature Fig 1(b). 
Here the quench and partitioning process takes place at the same 
temperature. The dilatometry data obtained from the partitioning 
stage of the one-step Q&P process was analyzed using the Johnson–
Mehl-Avrami-Kolmogorov (JMAK) equation:
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Where 𝑓𝑓𝑓𝑓𝛼𝛼𝛼𝛼,=fraction transformed; t=time;k=frequency factor; and n=Awrami exponent 

The isothermal data was then plotted as ln (ln � 1
1−𝑓𝑓𝑓𝑓𝛼𝛼𝛼𝛼

�) vs. ln t. Using the least square fit 

method on the dilatometric data, "n" and "k" parameters of the JMAK equation were 

obtained. The isothermal kinetics obtained by analyzing the JMAK equation differ 

significantly above and below the Ms, suggesting different phases above and below Ms. The 

heat-treated samples were then analyzed using neutron diffraction at the Nuclear Energy 

Council of South Africa (NECSA). The aim was to identify the different phases present after 

the Q&P heat treatment. The samples were scanned in the 2θ range from 27 to 115 degrees. 

The diffraction patterns obtained were analyzed by the Rietveld method [7] using TOPAZ 4.2 

software. The lattice parameters obtained for RA was related to its carbon content using the 

empirical relationship between lattice constant and composition [8] as given by equation 2: 

a (γ) =0.3556+0.00453(WC)+0.00095(WMn) +0.0056(WAl) +0.0006 (WCr)-0.0002(WNi)     Equation 2 

Where a(γ) = lattice parameter of austenite, and WC, WMN, WAl, WCr, and WNi are the weight 

percent of C, Mn, Al, Cr, and Ni in the RA phase. 

The heat-treated dilatometer samples were ground polished and etched with 2% nital to 

reveal the microstructure. For both one-step and two-step, the microstructures were obtained 

using a scanning electron microscope (SEM). 
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) vs. ln t. Using 
the least square fit method on the dilatometric data, “n” and “k” 
parameters of the JMAK equation were obtained. The isothermal 
kinetics obtained by analyzing the JMAK equation differ 
significantly above and below the Ms, suggesting different phases 
above and below Ms. The heat-treated samples were then analyzed 
using neutron diffraction at the Nuclear Energy Council of South 
Africa (NECSA). The aim was to identify the different phases 
present after the Q&P heat treatment. The samples were scanned 
in the 2θ range from 27 to 115 degrees. The diffraction patterns 
obtained were analyzed by the Rietveld method7 using TOPAZ 4.2 
software. The lattice parameters obtained for RA was related to 
its carbon content using the empirical relationship between lattice 
constant and composition8 as given by equation 2:

a (γ) = 0.3556+0.00453(WC)+0.00095(WMn) +0.0056(WAl) 
+0.0006 (WCr)-0.0002(WNi)  			      Equation 2

Where a(γ) = lattice parameter of austenite, and WC, WMN, WAl, 
WCr, and WNi are the weight percent of C, Mn, Al, Cr, and Ni in the 
RA phase.

The heat-treated dilatometer samples were ground polished and 
etched with 2% nital to reveal the microstructure. For both one-step 
and two-step, the microstructures were obtained using a scanning 
electron microscope (SEM).

3.	 Results

3.1	 Two-step Q&P heat treatment

In two-step Q&P heat treatment, optimum quench temperature was 
calculated using Speer Model.2 The optimum quench temperature 
for the alloy used was calculated as 225oC and is described in.9 
The sample length change in the specimen was analyzed from the 
start to the end of the partitioning process. The dilation during 
the isothermal hold at different quench temperatures is shown 
in Figure 2. The dilation observed during the partitioning step 
is related to carbon partitioning from martensite to the austenite 
phase, bainite formation, or growth of the martensite phase. At 
low quench temperatures 200 and 220oC, rapid expansion was 
observed, followed by a contraction. In the 240oC quench after the 
initial expansion, there was a gradual rise before leveling off. In the 
case of a 260oC quench, a significant increase in length related to 
bainite formation was observed, as carbon partitioning alone could 
not lead to such an increase in dilation.

3.2	 Isothermal or One-step Q&P treatment

In one-step Q&P heat treatment, the isothermal hold after quenching 
was for 600 s. At temperatures far below Ms, i.e., 215i and 225i 
curves in Figure 3, there was a rapid expansion for 100 s, and in the 
latter part of the hold, there was a slight expansion, but the curve 
saturated towards the end of the hold time. This initial expansion 
was attributed to the carbon partitioning from the athermal 
martensite to RA. For 400i and 425i curves, the expansion was 

Figure 1: Schematic diagrams of the heat treatment profiles carried out in the dilatometer (a) Two-step Q&P (b) One-step Q&P

Figure 2: Dilation in samples at the partitioning temperature of 
400 oC after quenched at different temperatures above and below 
optimum quench temperature of 225 oC
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recorded with no saturation as the hold time increased, signifying 
incomplete reaction.

The raw data obtained for each isothermal reaction during different 
holding times were subjected to cubic spline interpolation to get a 
fixed incremental time interval value. The data was later smoothed 
by moving average to decrease the scatter. Assuming that the 
JMAK equation could be fitted into the data set, the values of n and 
k were obtained from the plot of ln (ln 
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Figure 3: Change in length during isothermal hold after quenching at 215 and 225 C(below 
Ms), 340 and 355oC (near Ms), and 400 and 425oC(above Ms) 
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3.3	 Neutron diffraction

The phase analysis using the data from neutron diffraction is 
obtained by the Rietveld method. Results of phase analysis for 
both one and two-step Q&P heat treatment are presented in Table 

2. The carbon in RA was obtained from equation 2 using the lattice 
parameter of the RA obtained from neutron diffraction.

The data analysis shows the RA amount increased with an 
increase in quench temperature in two-step Q&P heat-treatment. 
Maximum RA was expected at 225oC quench as per Speer model,2 
but it was found at 260oC with a volume fraction of 22%. The 
carbon content in RA also decreased 0.65 to 045 wt% C with an 
increase in quench temperature. In one step Q&P heat-treatment, 
the amount of RA also increased up to 355oC, which is below the 
Ms temperature(368oC), and then above Ms, it decreased with an 
increase in temperature. Above the Ms, the RA was not stabilized 
after 600 s during the isothermal hold, and the austenite transformed 
martensite on quenching to room temperature. The carbon content 
in RA also followed the same trend, i.e., increased with an increase 
in the isothermal hold temperature up to near the Ms and decreased 
beyond the Ms temperature.
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Figure 3: Change in length during isothermal hold after quenching at 215 and 225 C(below Ms), 340 and 355oC (near Ms), and 400 and 

425oC(above Ms)

Table 2: Retained austenite and its carbon content in one-step and two-step Q&P heat-treatment at various quench temperatures
Two-step Q&P heat treatment One-step Q&P heat treatment

Quench temperature(o C) %RA %C in RA Quench temperature(o C) %RA %C in RA
180 10.27 0.66 215 6,14 0,049
200 13.03 0.59 225 6,32 0,11
220 13.65 0.59 340 15,14 0,35
225 14.75 0.57 355 19 0,354
240 17.74 0.51 400 17,09 0,34
260 22.27 0.46 425 6,31 0,13
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3.4 Microstructures

The microstructures of both the two-step and one-step Q&P heat 
treatment are presented for the two quench temperatures of 220 

and 260oC and 215 and 355oC, respectively, based on the lowest 
and highest RA identified by neutron diffraction. For the two-
step quench, the microstructures show wedge-shaped lath with 
carbides and few laths with no carbides, which are unetched. The 
260oC sample showed the presence of bainite. The RA could not 
be identified using the normal secondary electron imaging (SEI) 
but using electron back-scattered diffraction (EBSD).9 As may be 

seen in Fig 5, the lath size increased as the quench temperature 

increased. The unetched laths have two different morphology (i) 

thin and long ridge shaped (ii) polygonal-shaped structure.

The one-step Q&P heat treatment at 215oC showed elongated lath 

with carbide precipitated in it, as seen in Figure 6. It also showed 

the presence of unetched coarse, mainly wedge-shaped lath, which 

could be newly formed martensite (SM) after quenching to room 

temperature. The martensite formed after the second quench has 

a high carbon content, so it was not etched easily with nital. The 
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355oC shows a different morphology of laths, which indicates the 
formation of bainite along with martensite and retained austenite.

4.	 Discussion

The transformation during the partitioning stage of one and two-
step Q&P was analyzed by dilatometry. The phase transformations 
are represented as a time-dependent change in length, Figs 2 and 
3. For the two-step, Q&P process, below the optimum quench 
temperature of 225 oC, a rapid rise in length was initially seen 
in Figure 2. Santofimia et al.10 had calculated the volume change 
associated with carbon partitioning. The small rapid rise initially 
seen is attributed to carbon partitioning, as suggested by Santofimia 
et al.10 The magnitude of length change differs slightly for all 
quench temperatures except for the 260oC quench, where the extent 
of change is large. This implies a different transformation product 
during the partitioning stage. At lower quench temperatures of 180 
and 200oC, the primary martensite formed undergoes tempering, 
leading to the contraction observed in Figure 2 in the later 
partitioning stage. Onink et al.11 had related the contraction to the 
decomposition of austenite films saturated with carbon into carbon 
depleted austenite and cementite. Above the optimum quench 
temperature, no contraction was observed as the carbon partitioning 
was balanced by tempering of martensite. At 260oC, where RA was 
found to be maximum, there was evidence of the bainite formation, 
Figure 5(b). The bainite formation led to the rejection of carbon 
from the ferrite plate, thereby enriching the surrounding austenite 
and stabilizing it.

There was an increase in length over time during the isothermal 
hold stage in one-step Q&P heat treatment. However, the dilation 
profile differed for the sample quenched above and below the Ms 
temperatures. Above Ms temperature, the initial structure present 
was austenite, and there was initial rapid expansion followed by 
gradual expansion. This implied that the transformation did not 
undergo completion even after 600 seconds of isothermal hold. 
Below Ms, the initial expansion was followed by saturation after 
200 seconds except for the sample held at 340oC. The sample 
held at 355oC showed the highest magnitude of length change and 
exhibited the maximum RA (19%) for the one-step Q&P process. 
This was further investigated with JMAK modeling of the curves, 
TTT diagram, and microstructural examination. From the JMAK 
model fit, the “n” and “k” parameters were evaluated and plotted as 
a function of temperature in Fig 7.

The sharp change in “n” and “k” values around the Ms indicate 
the decomposition product from austenite above and below Ms 
is different. The TTT diagram obtained from the isothermal 
transformation regime shows a “swing back effect” just below the 
Ms, Fig 8. According to Oka et al.12 and Radcliffe et13 swing back 
phenomenon is related to the presence of thin plates of martensite, 
which accelerates the nucleation of bainite in the adjacent RA. This 
leads to carbon transfer into austenite, leading to its stabilization. 
Observation of microstructures at 355oC Figure 6(b) revealed the 
presence of bainite. This is why a high amount of RA was observed 
at 355oC quenched sample in one step Q&P.

Figure 6: Microstructure of samples after the one-step Q&P heat treatment with quenching (a) 215 oC (b) 355 oC (B=Bainite RA= 
Retained austenite SM=Secondary martensite)
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The RA content is necessary to enhance ductility in Q&P steels, 
and therefore, the two-step Q&P heat treatment seems to be a 
better option based on the neutron diffraction results. The carbon 
content in the RA is higher than the one-step Q&P process, which 
should enhance the stability of RA. In the partitioning stage, carbon 
atoms from primary martensite and freshly formed isothermal 
transformation products partition to untransformed austenite. The 
kinetics of carbon atom transfer becomes slower as the austenite is 
continuously get reduced. This explains a lower amount of the RA 
is observed at lower quench temperatures, i.e., way below Ms. At 
temperature above, Ms austenite was not stabilized as evidenced 
from neutron diffraction results. This is because there was no 
supersaturated martensite from where carbon could partition. 
In terms of microstructure one-step, Q&P heat-treated sample 
exhibited a coarser lath structure than the two-step Q&P one due 
to the growth of laths during the isothermal hold, where the time 
of hold was larger.

5.	 Conclusion

The study of one-step and two-step Q&P heat treatments on a 
medium carbon high silicon alloy using dilatometry was carried 
out, and the following conclusions can be made:

•	 The two-step Q&P process gives higher amounts of the RA 
than the one-step Q&P process; hence the two-step process is 
preferable due to enhanced kinetics regarding stabilization and 
a finer microstructure.

•	 The “n” and “k” parameters in the JMAK equation revealed the 
kinetics of austenite decomposition to be different above and 
below Ms. in one-step Q&P  process

•	 Below the Ms, the presence of thin martensite plates accelerated 
the transformation of the RA to bainite which was evident from 
the “swing-back” in TTT the diagram
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