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Women of African descent are more likely to have bacterial vaginosis than women of 
other ethnicities. Both diversity and likely specific taxa in these microbial communities are 
important to sexual and reproductive health, such as HIV risk. However, whether the specific 
taxa also vary by geographical location and/or ethnicity requires further investigation.
 Here, we compare the vaginal microbiota of 16–22-year-old black, HIV-negative South 
African women from two geographically disparate but low-income high population density 
communities, one in Cape Town (CPT) and one in Johannesburg (JHB). Vaginal microbiota 
composition was assessed by 16S rRNA gene amplicon sequencing of lateral vaginal wall swabs. 
 Geographical location was significantly associated with vaginal microbiota composition 
by permutational analysis of variance (PERMANOVA) (p=0.02), as were body mass index 
BMI (p=0.015) and human papilloma virus (HPV) risk type (p=0.005), while the presence 
of one or more sexually transmitted infections (STIs) (p=0.053) and hormonal contraceptive 
(HC) usage (p=0.4) were not. Geographical location remained a significant determinant of 
microbiota composition independent of BMI, STI status and HPV-risk. Together, geographical 
location, BMI and HPV-risk explained 10% of the variance in microbiota composition with a 
large proportion of the variance remaining unexplained. Several taxa differed significantly 
between geographical location – some by frequency and others by relative abundance. 
 Our results therefore suggest that HIV prophylactic approaches targeting the vaginal 
microbiota should be geographically tailored.

Geografiese ligging beïnvloed vaginale mikrobiese profiele in Suid Afrikaanse vroue: 
Vroue van Afrika-afkoms is meer vatbaar vir bakteriële vaginose (BV) in vergelyking met 
Europese vroue. Beide mikrobiese diversiteit (soos met BV) sowel as spesifieke bakteriële 
taksa speel ‘n rol in seksuele en reproduktiewe gesondheid insluitende MIV vatbaarheid.
 Die moontlike rol van geografiese ligging en etnisiteit op die verhouding tussen 
mikrobiese samestelling en seskuele en reproduktiewe gesondheid bly egter onbekend. 
 In hierdie studie vergelyk ons dus die vaginale mikrobiota van 16–22-jarige swart, HIV-
negatiewe Suid Afrikaanse vroue van twee geografies-uiteenlopende liggings, beide lae-
inkomste,hoë bevolkingsdigtheidsgemeenskappe, een in Kaapstad, en een in Johannesburg. 
Vaginale mikrobiese profiele is bepaal met behulp van 16S rRNS volgordebepaling van 
laterale muur deppers.
 Ons pas permutasie variansieanalise (PERMANOVA) toe en vind statisties betekenisvolle 
assosiasies tussen vaginale mikrobiese samestelling en geografiese ligging (p=0.02), asook 
met liggaamsmassa-indeks (LMI) (p=0.015) en menslike papilloomvirus (MPV) risikotipe 
(p=0.005), maar nie met die voorkoms van een of meer seksueel-oordraagbare infeksies 
(SOI’s) (p=0.053) of met hormonale kontrasepsie verbruik nie.(p=0.4) 
 Geografiese ligging was ‘n statisties betekenisvolle determinant van mikrobiese 
samestelling, ongeag verskille in LMI, SOI status en MPV-risiko tipes tussen Kaapstad 
en Johannesburg vroue. Geografiese ligging, LMI en MPV-risiko verduidelik gesamentlik 
10% van die variansie in mikrobiese samestelling, met ‘n groot persentasie van onbekende 
oorsprong. Verskeie taksa het statisties betekenisvol verskil in terme van frekwensie of 
relatiewe vlakke van voorkoms tussen die geografiese liggings.
 Ons resultate stel voor dat MIV profilaktiese metodes wat die vaginale mikrobiota teiken 
die effek van geografiese ligging in ag moet neem.
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Johannesburg (JHB). Approval was obtained for the study 
from the Research Ethics Committees of the Universities of 
Cape Town and Witwatersrand. All participants ≥ 18 years 
provided informed consent, while assent and parental 
consent were obtained for participants ≤ 18 years. Young 
women were enrolled if they were HIV-negative, in general 
good health, not pregnant or menstruating at the time 
of sampling, and if they had not had unprotected sex or 
douched in the last 48 hours. Additional exclusion criteria 
were use of antibiotics in the prior two weeks. Study visits 
were scheduled two weeks after injection for participants 
on injectable progestin contraceptives, or otherwise during 
the luteal phase of their menstrual cycles (between day 
14–28) if they were not using any HCs or if they were using 
oral HCs. Before specimen collection, the following were 
performed: HIV pre-test and risk-reduction counselling, an 
HIV rapid test (Alere Determine™ HIV-1/2 Ag/Ab Combo, 
Alere, Waltham, MA), a pregnancy test (U-test Pregnancy 
strip, Humor Diagnostica, Pretoria, South Africa) and a 
general physical examination. Cervicovaginal fluid via 
disposable menstrual cup (Softcup®), one vulvovaginal 
swab for STI testing and one lateral vaginal wall swab for 
Nugent scoring and microbiome analysis were collected.

STI and BV testing
Vulvo-vaginal swabs were assayed for nucleic acid of the 
following STIs by multiplex PCR: Chlamydia trachomatis, 
Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma 
genitalium, HSV-1 and -2, Haemophilus ducreyi, Treponema 
pallidum and lymphogranuloma venereum as previously 
described (Lewis et al. 2012). Endo-cervical swabs were 
collected for HPV detection and genotyping by Roche 
Linear Array (Mbulawa et al. 2018). The following HPV 
types were considered high-risk HPV: 16, 18, 31, 33, 35, 39, 
45, 51, 52, 56, 58, 59, 66, 68 (Jacobs et al. 1997). For analyses 
referring to STI (any), women considered positive had at 
least one of the STIs tested for in this study, excluding HPV. 
Lateral wall/posterior fornix swabs were collected for 
Nugent scoring to classify samples as BV negative (Nugent 
0–3), intermediate (Nugent 4–6) or positive (Nugent 7–10); 
and vaginal pH was measured using colour-fixed indicator 
strips (Macherey-Nagel, Düren, Germany).

16S sequencing and analysis
Swabs were thawed, treated with a cocktail of mutanolysin 
(25kU/ml, Sigma Aldrich), lysozyme (450kU/ml, Sigma 
Aldrich), and lysostaphin (4kU, Sigma Aldrich), then 
mechanically disrupted with a bead-beater. DNA was 
extracted using the MoBio PowerSoil DNA extraction kit 
(MoBio, Carlsbad, CA). The V4 region of the 16S rRNA 
gene was amplified using universal primers that were 
modified to encode the Illumina MiSeq sequencing primer 
sequence at the 5’ end (46): 515F (TCG TCG GCA GCG TCA 
GAT GTG TAT AAG AGA CAG NNN NNG TGC CAG 
CMG CCG CGG TAA) and 806R (GTC TCG TGG GCT 
CGG AGA TGT GTA TAA GAG ACA GNN NNN GGA 

Introduction
Vaginal microbiota profiles vary by ethnicity (Srinivasan 
et al. 2012; Buvé et al. 2014; Ravel et al. 2010). Women 
of African descent less commonly have Lactobacillus-
dominant vaginal microbiota compared with Caucasian 
women (Ravel et al. 2010; Anahtar et al. 2015b; Lennard et 
al. 2017). This finding appears to be generalisable to African 
American and Hispanic women from North America who 
frequently have decreased relative abundance of  
(Anahtar et al. 2015a; Fettweis et al. 2014; Zhou et al. 
2007). It is less clear to what extent geographical location 
affects vaginal microbiota composition among women of 
the same ethnicity. Bacterial vaginosis (BV) rates vary by 
ethnicity and geographical location (with potentially large 
variation in the proportion of BV among different African 
countries) (Kenyon, Colebunders, and Crucitti 2013). Yet, 
detailed description of vaginal microbiota composition by 
geographical location is currently lacking.

It has long been recognised that bacterial vaginosis (a 
vaginal dysbiosis) is associated with adverse sexual 
and reproductive health outcomes, including sexually 
transmitted infections (Wiesenfeld et al. 2003; Gallo et 
al. 2012; Balkus et al. 2014) and adverse birth outcomes 
(Leitich and Kiss 2007; Holst, Goffeng, and Andersch 
1994; Nelson et al. 2015). Recently, with the advent of next 
generation sequencing, specific taxa have been implicated 
in these outcomes – such as preterm births (Freitas et al. 
2018; Tabatabaei et al. 2018; Vinturache et al. 2016) and 
HIV risk (McClelland et al. 2018). In a study conducted 
on five separate cohorts from Kenya, Uganda, South 
Africa, Tanzania, Botswana and Zambia, McClelland et 
al. identified taxa that were associated with increased 
odds of HIV acquisition across all cohorts considered, 
some of which were significantly so (Parvimonas species 
type 1 and 2, Gemella asaccharolytica, Mycoplasma hominis) 
(McClelland et al. 2018). The question as to whether we 
can define a robust microbiota signature of HIV risk that is 
generalisable across geographical locations/ethnicities, or 
whether location-specific taxa should be identified for HIV 
risk assessments remains. 

Here, we compare the vaginal microbiota of 16–22-year-old 
black HIV-negative South African women from two low-
income high population density communities; one in Cape 
Town (CPT) and the other Johannesburg (JHB).

Materials and Methods
Participant selection and sample collection
The cohorts have been described previously in detail 
(Barnabas et al. 2017; Lennard et al. 2017). Briefly, 298 black, 
16–22-year-old HIV-negative South African women were 
recruited as part of the Women’s Initiative in Sexual Health 
(WISH) study (Barnabas et al. 2017) from low-income, high 
population density communities in Cape Town (CPT) and 
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CTA CHV GGG TWT CTA AT), where NNNNN indicates 
five randomly incorporated nucleotides for increased 
complexity (Pearce, Hilt, and Rosenfeld 2014). The 5’ end is 
the Illumina Nextera adapter, and the sequences following 
the Ns are complementary to the V4 rRNA gene region. 

Pooled samples were purified with AMPure XP beads 
(Beckman Coulter, Brea, CA, USA) and quantified by 
using the PicoGreen double-stranded DNA (dsDNA) 
assay (Invitrogen, Carlsbad, CA, USA). Dual indices and 
Illumina sequencing adapters were attached using the 
Nextera XT DNA Prep kit (Illumina). Samples were again 
purified by using AMPure XP beads, quantified by using a 
Qubit fluorometer (Invitrogen), and pooled for sequencing. 
Purified libraries consisting of 96 pooled samples were 
paired-end sequenced on an Illumina MiSeq platform (300-
bp paired-end reads with V3 chemistry). 

Following demultiplexing, raw reads were preprocessed 
as follows: forward and reverse reads were merged 
using usearch7 (Edgar 2010), allowing a maximum of 
three mismatches; merged reads were quality filtered 
using usearch7 (reads with E scores larger than 0.1 were 
discarded); primer sequences were removed using a 
custom python script; and merged, filtered reads were 
truncated at 250bp. Next, sequences were de-replicated 
whilst recording the level of replication for each sequence 
using usearch7. De-replicated sequences were sorted by 
abundance (highest to lowest) and clustered de novo into 
operational taxonomic units (OTUs) at 97% similarity 
using usearch7. Chimeric sequences were detected (against 
the Gold database) using UCHIME (Edgar et al. 2011) 
and removed. Individual sequences were assigned to 
the specific identifiers using a 97% similarity threshold. 
Taxonomic assignment was performed in QIIME 1.8.0 
(Caporaso et al. 2010) using the RDP classifier (using the 
default confidence level of 0.5) against the GreenGenes 13.8 
reference taxonomy for 97% identity. To increase species-
level resolution, we constructed a custom taxonomic 
database appropriate for V4 region 16S rRNA gene 
amplicon sequencing based on the custom vaginal 16S 
rRNA gene reference database created by Fettweis et al. 
(Fettweis et al. 2012). This database was updated for the 
V4 region and used to increase species-level resolution 
as previously described (Lennard et al. 2017). OTUs that 
mapped to more than one species (with the same identity 
score) were annotated as follows: if an OTU mapped to two 
or three species, the OTU would be named Genus speciesA_
speciesB or Genus speciesA_speciesB_speciesC, respectively, 
and if an OTU mapped to more than three species but one 
species was clearly associated with vaginal microbiota 
(based on prior knowledge), the OTU was named Genus 
species_cluster, where “species” was selected based on the 
majority of hits; e.g., L. reuteri_cluster indicates the case 
where the majority of hits were for L. reuteri but there were 
several other species with equal identity scores present. 

Samples with ≥ 5000 reads were selected for downstream 
analyses. The OTU table was standardised (i.e. transformed 
to relative abundance and multiplied by the median sample 
read depth), and filtered so that each OTU had to have at 
least 10 counts in at least 2% of samples or have a relative 
abundance of at least 0.001%. 

Statistical analyses
All downstream statistical analyses were performed in R, 
using the packages phyloseq (McMurdie and Holmes 2013) 
for beta diversity analyses, metagenomeSeq (Paulson et al. 
2013) for differential abundance testing, vegan (Oksanen 
et al. 2016) for ordinations and redundancy analysis, and 
NMF (Gaujoux 2014) for annotated heat maps. 

Permutational multivariate analysis of variance (PER-
MANOVA) was performed using the adonis and adonis2 
functions from the R package vegan (Oksanen et al. 2016); 
for the adonis function the order of predictor variables 
matter, while the order of terms do not affect results 
in the adonis2 function. Because we did not wish to 
make assumptions regarding the relative importance of 
predictor variables, adonis2 was used to obtain p-values 
for individual variables, while adonis() was used to 
obtain adjusted R2 values (which are not available when 
using adonis2). The assumption for PERMANOVA of 
homogeneity of variance between groups was assessed 
using the betadisper() function from the R package vegan 
(Oksanen et al. 2016). This assumption was met when 
using Bray-Curtis as distance metric, but not when using 
UniFrac distance or weighted UniFrac distance; hence we 
used Bray-Curtis distance. In the final model ethnicity 
(for which 24 participants had missing information) was 
excluded as ethnicity was not significant when performing 
PERMANOVA on the subset of participants for whom we 
did have ethnicity information. 

Distance-based redundancy analysis (db-RDA) was 
performed on Bray-Curtis dissimilarity matrix using 
the dbrda() function from the R package vegan and the 
ordination was constrained on geographical location, STI 
(any), BMI and HPV risk (variables that were not significant 
by PERMANOVA were excluded from the final model 
used for visual presentation in Figure 1). 

Differences in microbial composition between groups of 
interest were assessed using the R package metagenome-
Seq’s MRfulltable function with a custom filter to determine 
significance: merged taxa were deemed significantly 
different if they exhibited a fold change (beta coefficient) of 
≥ 1.5, had an adjusted p-value of ≤ 0.01 and if at least one 
of the two groups being compared had ≥ 20% of samples 
with the given taxon OR the Fisher’s exact test result 
was significant (after multiple testing correction). OTUs 
were first merged at the lowest available taxonomic level 
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(i.e. for OTUs with Lactobacillus as the lowest available 
taxonomic annotation counts were summed, while OTUs 
with additional species-level annotation e.g. L. iners were 
summed at species-level instead). Composite barplots 
(Figure 2) were also created based on this merged table. 
The most abundant taxa were selected as follows: For each 
sample the most abundant taxa were determined (based 
on standardised, merged taxon counts), after ranking taxa 
for each sample by read counts (high to low) and selecting 
those taxa that cumulatively made up the first 50% of reads 
for that sample. This resulted in a list of 28 unique taxa 
across all samples, which was then limited to the subset that 
had been classified as ‘abundant’ in at least two samples, 
reducing the number of abundant taxa to 12 (Figure 2). 

Random forests analyses were conducted on merged taxa to 
determine which taxa best predicting geographical location 
using the R packages randomForest (Liaw and Wiener 
2002) and ROCR (Sing et al. 2005) for ROC analysis. The full 
dataset in question was used to train random forests models, 
i.e. the data were not divided into training and test sets. 

Results
Microbiota profiling was performed by 16S rRNA gene 
amplicon sequencing for 102 women from CPT and 79 
women from JHB (Table 1). The two groups were well 

matched in terms of age (median 18 years for both locations). 
Hormonal contraceptive usage differed significantly with 
100% of CPT women compared with 41% of JHB women 
on some form of hormonal contraceptive, likely due to 
differences in recruitment approaches between the two sites 
(CPT participants were recruited through a family planning 
clinic while JHB participants were recruited from a broader 
population). CPT women had higher BV prevalence (55 vs. 
35%), STI prevalence (59 vs. 24%), BMI (25.4 vs. 22.5), had 
higher levels of genital inflammation and were of more 
homogenous ethnicity than JHB women (Table 1). 

To identify factors influencing vaginal microbiota pro-
files, permutational multivariate analysis of variance (PER-
MANOVA) was performed. Factors considered included 
ethnicity, age, hormonal contraceptive usage (yes/no), 
the presence of any one or more STI excluding HPV (yes/
no), HPV-risk (high/low/negative), geographical location 
and BMI. Ethnicity was not included in the final model 
since there were 24 participants for whom we did not have 
ethnicity information and ethnicity was not a significant 
factor when performing PERMANOVA on the subset for 
whom we did have ethnicity information. Age was also 
not included in the final model as there was no significant 
different in age between JHB and CPT (Table 1). Factors 
significantly associated with vaginal microbiota composition 
were geographical location (p=0.02), BMI (p=0.015), and 

TAble 1: Participant	summary	by	geographical	location

Feature Cape Town (N=102) Johannesburg (N=79) P value

Median	age,	years	 18	 18	 0.6
BV	prevalence,	n	(%)	 	 	 0.008
    BV positive	 56	(55)	 28	(35)	
    BV intermediate	 7	(7)	 15	(19)	
				BV	negative	 39	(38)	 36	(46)	
Nugent	score	(median)	 8	 4	 0.01 
STI	(any),	n	(%)	 60	(59)	 19	(24)	 2.7e-6
C. trachomatis	 45	(44)	 13	(17)	 1e-4
N. gonorrhoeae	 14	(14)	 4	(5)	 0.08
T. vaginalis	 6	(6)	 3	(4)	 0.7
M. genitalium	 4	(4)	 2	(3)	 0.7
HSV-2 (DNA)	 6	(6)	 1	(1)	 0.1
HPV	risk,	n	(%)	 	 	 0.3	
    High 42	(41)	 33	(42)	
    Low		 29	(28)	 15	(19)	
    Negative	 31	(30)	 31	(39)	
Hormonal	contraceptives	&,	n	(%)	 	 	 < 2.2e-16
    DMPA 	 19	(19)	 9	(12)	
    Implanon	 8	(8)	 0	(0)	
    Nur isterate	 70	(69)	 12	(15)	
    OCP	 4	(4)	 6	(8)	
    Male condom	 0	(0)	 36	(46)	
    Nuvaring	 1	(1)	 0	(0)	
    Injectable (type not specified)	 0	(0)	 5	(6)	
    None	 0	(0)	 10	(13)	
Using	hormonal	contraceptives,	n	(%)	 	 	 < 2.2e-16 
    Any hormonal contraceptive 				 102	(100)	 32	(41)	
    Condoms/none   		 0	(0)	 46	(59)	
Ethnicity#,	n	(%)   
    Xhosa 94	(99)	 17	(28) < 2.2e-16 
    OtherQ 1	(1)	 44	(72) 
BMI (median) 25.3	 22.5 0.04

Y=Yes;	N=No;	&one	woman	had	incomplete	HC	data;	#25	women	had	incomplete	ethnicity	data
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HPV-risk (p=0.005), while STI (p=0.053) and HC use (p=0.4) 
were not. Together these factors explained ~10% of the 
variation in microbiota composition with the remaining 90% 
of unknown origin. Given the large discrepancy in HC use 
between geographical locations (Table 1) PERMANOVA 
was redone on the subset of women who used HC, excluding 
those who used condoms only or no form of contraceptive. 
Again location (p=0.02), BMI (p=0.03) and HPV-risk (p=0.05) 
were significant while STI use was not (p=0.7).

Distance-based redundancy analysis (db-RDA) was 
performed on the Bray-Curtis dissimilarity matrix, which 
confirmed the PERMANOVA results (Figure 1); db-RDA is 
a constrained principal coordinates analysis, which allows 
the use of non-Euclidean dissimilarity indices such as Bray-
Curtis, therefore more suited to 16S rRNA gene microbiome 

data. Factors included in the db-RDA ordination included 
geographical location, STI other than HPV (yes/no), 
HPV-risk and BMI (i.e. factors that were significant by 
PERMANOVA, with STIs p=0.053). To further confirm 
the significance of geographical location on microbiota 
composition, factors that vary significantly by location 
(STI(yes/no), HPV-risk and BMI) were partialed out in the 
db-RDA model, yet location remained significant (p=0.02).

The most abundant taxa are summarised by geographical 
location in Figure 2.

To determine which taxa significantly differed between CPT 
and JHB, differential abundance analysis was performed 
using the R package metagenomeSeq. The analysis 
was performed on taxa merged at the lowest available 

FiguRe 1: Distance-based	redundancy	analysis	(dbRDA)	on	the	Bray-Curtis	dissimilarity	matrix	by	geographical	location,	STI(yes/no),	HPV-risk	(high/medium/low)	
and	BMI	
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taxonomic annotation (see Methods for details). Eighteen 
taxa differed significantly in terms of frequency and/or 
relative abundance between JHB and CPT (Figure 3). 

Taxa that were significantly higher in frequency (i.e. 
proportion of positive samples) in CPT compared to JHB 
included Bifidobacterium, Prevotella pallens, Pseudomonas, 
Elizabethkingia meningoseptica, Brevundimonas, Myco
plas mataceae and Chryseobacterium whereas Lacto bacillus 
coleohominis, Lactobacillus reuteri_cluster, Morganella morganii 
and Varibaculum cambriense were more common in JHB 
women. Taxa that were present at similar frequencies 
between the CPT and JHB but varied in terms of relative 
abundance were Leptotrichiaceae, Sneathia sanguinegens, P. 
amnii, Prevotella and BVAB3 (Mageeibacillus indolicus), all of 
which had higher relative abundance in samples from CPT. 

Random forest analysis identified M. morganii and V. 
cambriense as the highest ranked taxa to distinguish samples 
from JHB vs. CPT (training AUC=0.95, PPV=0.91, NPV=0.89).

Discussion
Vaginal microbiota profiles are known to vary by ethnicity 
and geographical location. Here we demonstrate differences 
in the relative abundance and frequency of colonisation of 
specific vaginal microbiota in African women from CPT 
and JHB, of similar ages and socioeconomic backgrounds. 
These differences could not fully be explained by factors 
that differed by geographical location, including hormonal 
contraceptive usage, ethnicity, BMI, HPV-risk or the 
occurrence of STIs. Together, geographical location, BMI 
and HPV-risk explained 10% of the variance in microbiota 
composition with a large proportion of the variance 
remaining unexplained.

McClelland et al. found in five different African cohorts, 
that the concentration of certain taxa were associated with 
later HIV seroconversion. In sensitivity analyses using 
frequency, however, certain of these taxa were clearly 
of more importance in specific cohorts. For example, the 

FiguRe 2: Composite	barplot	highlighting	the	most	abundant	taxa	in	A)	CPT	and	B)	JHB.	Taxa	included	in	the	legend	were	selected	from	those	taxa	that	made	up	
the	first	50%	of	each	sample	when	ranked	by	abundance.	Participants	are	ordered	based	on	their	most	dominant	taxon,	matching	the	order	of	the	figure	legend	
(e.g.	participants	for	whom	Megasphaera	was	the	most	abundant	taxon	are	listed	first);	other:	the	summed	abundance	of	all	taxa	not	included	in	the	figure	legend.
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presence of detectable Mycoplasma hominis played a role 
in HIV risk in Kenyan female sex workers but not in 
serodiscordant couples from Uganda and South Africa, 
where Gemella and Parvimonas were more important players 
in the latter cohort (McClelland et al. 2018). In a study of 
women from KwaZulu Natal, Williams et al found that 
the relative abundance of Prevotella bivia to be the taxon 
most predictive of later HIV seroconversion (Williams, 
AIDS Conference 2016). Finally, Gossman et al, also in a 
cohort from KZN but younger than the CAPRISA cohort, 
found that relative abundances of P. melaninogenica and 
Veillionella montpellierensis were the taxa most predictive of 
later HIV seroconversion (Gosmann et al. 2017). 

Several studies of vaginal microbiota and preterm birth 
have found Lactobacillus-dominant vaginal microbiota 
to be protective, however, no taxa have consistently been 
associated with increased risk of this outcome (Dingens 
2016, Romero 2014). Freitas et al. found the concentration of 

Mollicutes to be a potential risk factor (Freitas et al. 2018). 
Although Gardnerella and Ureaplasma relative abundance 
were predictive of preterm birth in a predominantly 
Caucasian cohort from California, Callahan et al. were 
unable to replicate these findings in a predominantly African 
American cohort from Alabama (Callahan et al. 2017).

In summary, although there may be a subset of taxa 
consistently associated with adverse sexual and repro-
ductive outcomes across a range of geographical loca-
tions, several clinically relevant taxa may be missed if 
geographical context is ignored. It remains unclear what 
might be driving these geographical differences in vaginal 
microbiota composition – environmental/community micro-
biota composition during early-life establishment of the 
microbiome likely plays an important role. Independent of 
the origin of these differences, our results strongly argue 
for geographically tailored microbiome-based diagnostics 
and therapeutics, even within the same country. 

FiguRe 3: Taxa	(merged	at	lowest	available	taxonomic	annotation)	that	differed	significantly	in	terms	of	relative	abundance	and/or	frequency	between	CPT	and	JHB.	
Columns	have	been	manually	sorted	by	location,	but	hierarchical	clustering	was	performed	within	each	location	subset.	Results	were	filtered	as	follows:	FDR	≤	0.01,	
beta	coefficient	≥	1.5	and	each	taxon	had	to	be	present	in	at	least	20%	of	samples	from	either	or	both	locations.
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